
 1

Testing for Imperfect Integration of Legacy Software Components

David Flater
National Institute of Standards and Technology

100 Bureau Drive, Stop 8260
Gaithersburg, MD 20899-8260 U.S.A.

+1 301 975 3350
dflater@nist.gov

Abstract
In the manufacturing domain, few new distributed systems
are built ground-up; most contain wrapped legacy
components. While the legacy components themselves are
already well-tested, imperfect integration can introduce
subtle faults that are outside the prime target area of
generic integration and system tests. One might postulate
that focused testing for integration faults could improve the
yield of detected faults when used as part of a balanced
integration and system test effort. We define such a testing
strategy and describe a trial application to a prototype
control system. The results suggest that focused testing
does not add significant value over traditional black-box
testing.

Keywords
Component, integration, legacy, system, testing

1 Introduction
Integration technologies such as the Common Object
Request Broker Architecture (CORBA) [16] and the
Component Object Model* (COM) [13] have changed the
way that software systems for manufacturing and other
domains are built. Components that were originally
deployed in different places and times are now being
wrapped with object-oriented interfaces and made to
interact with one another. Data exchange is being replaced
by data sharing [12]. This has created a new category of
problems for software testers, who must find not only
component faults, but also integration faults such as

* Commercial equipment and materials are identified in
order to describe certain procedures. In no case does such
identification imply recommendation or endorsement by
the National Institute of Standards and Technology, nor
does it imply that the materials or equipment identified are
necessarily the best available for the purpose.

unintended interactions between components and
misunderstood interface semantics. While overt functional
faults are detected by current testing practices, imperfect
integration between legacy components or between legacy
components and the interfaces with which they are
wrapped can introduce subtle faults that are outside the
prime target area of generic functional tests. One might
presume that a change in tactics is needed to target the new
class of faults – but is it really?

Since working around imperfect integration is a chronic
expense, any reduction in imperfect integration could result
in dramatic savings. In this paper we will examine the
taxonomy of integration conflicts, describe how to
construct tests aimed specifically at detecting faults
induced by those conflicts, and discuss an application of
those tests to a prototype control system.

2 Related Work
Black-Box Testing by Boris Beizer provides ample
background on traditional testing techniques [2]. Another
relevant book by the same author, Integration and System
Testing, is still forthcoming as of October, 1999.

Some of the worst legacy system integration faults are
analogous to faults that can occur in newly developed
software that lacks conceptual integrity. Brooks has much
to say on this topic in The Mythical Man-Month [3],
focusing on prevention.

The concepts of components and connectors in a system
are formalized in architecture description languages
(ADLs). Recent work involving ADLs includes
formalization of dependencies between components [19]
and operations on connectors [7].

Zhenyi Jin and Jeff Offutt have defined a coupling-
based testing technique [11] and coupling-based coverage
criteria for integration testing [10]. These focus on white
box functional testing of connections, for example, testing
the expected values of variables before and after an
interaction between components, and on structural
coverage.

Numerous formal languages and simulation tools exist
for avoiding concurrency-related problems in distributed
systems; these are chiefly used in the networking,
telecommunication, and real-time disciplines, where finite
state approaches are relatively common [8,9].

 2

Finally, there are efforts ongoing, such as those of the
Testing Distributed Systems project at Purdue [18] and the
Test Special Interest Group of the Object Management
Group [15], to build tools and define interfaces for
monitoring and debugging the kind of distributed system
that concerns us.

3 Taxonomy of Integration Conflicts with
Suggested Test Cases
Our approach to defining a "focused" testing strategy for
integration conflicts is to (1) explore the taxonomy of
integration conflicts; (2) enumerate the techniques used to
resolve the conflicts; (3) enumerate the faults that these
techniques could potentially introduce; and (4) determine
test cases to detect the resulting failures.

We have built this taxonomy out of our own
experiences and those of people we surveyed. The
categories are not all mutually exclusive, but each one at
least provides a unique view of the conflict. Inevitably,
readers will have experienced other kinds of conflicts that
we have not anticipated, which may suggest additional test
cases.

3.1 Connection
3.1.1 Conflict Description
A connection conflict occurs when the interfaces exposed
by the components are architecturally different. Examples:

• We have data flowing through a pipeline but we need
to integrate a component that only reads and writes to
files.

• We have an ODBC (Open Database Connectivity)
client but the database server is web-based.

• We need to pipe data into an application that only
provides a graphical user interface (GUI) for data
entry.

3.1.2 Resolution
In trivial cases, such as the pipes-versus-files conflict, it is
possible to resolve the conflict using a scripting language.
Output redirection can be used as a pipe-to-file adapter, and
any program that can copy a file to standard output can be
used as a file-to-pipe adapter. We can think of these
programmatic expedients formally as transformations on
connectors [7].

In harder cases it may be necessary to wrap a
component with a new interface and translation logic; this
wrapping is also a kind of integration and can produce new
conflicts. In the worst case it is necessary to alter the
component itself to give it a new interface because no
transformation of the existing connector is feasible.

3.1.3 Potential for Faults
Even the trivial pipe-to-file resolution can introduce faults
related to file name collisions, full disk conditions, network

problems (for networked file systems), and unintended
interactions with other programs or people modifying the
file system. Some nontrivial adaptations create the
potential for semantic bugs, and most will alter the timing
of transactions, possibly triggering timing-related failures.

3.1.4 Test Cases
Test for file name collisions, full disk conditions, network
problems, concurrency problems and other timing-sensitive
faults by stress-testing (i.e., testing under heavy load) the
relevant interface in combination with any other entities,
external or internal, that would compete for the same
resource. Complex adapters should additionally be
subjected to coverage-based testing (i.e., testing to cover
some domain of inputs or behaviors) to check each
translation that the adapters make.

3.2 Control
3.2.1 Conflict Description
A control conflict occurs when the components embody
incompatible assumptions about the flow of control in the
system. Examples:

• Two components each expect to be the "main"
component, and neither will respond to the other's
requests. We call this case "too many leaders."

• Two components each expect to be "pure servers," and
neither will make requests of the other. We call this
case "no leader."

3.2.2 Resolution
In the "too many leaders" case, one of the "leaders" must be
converted into a "follower." This can be more or less
difficult depending on the architecture of the component.
Often it is necessary to build a wrapper that synthesizes
meaningless transactions in order to get the component to
perform requested actions.

The "no leader" case is easier. One need only supply
the missing "main" component.

3.2.3 Potential for Faults
Converting a "leader" into a "follower" is an inherently
fragile operation because it violates the component's
assumption that it does, in fact, control the entire system.
When a special case arises, the component may take
actions, such as initiating interactions with subordinates,
that are not anticipated by the integrator. There are also
likely to be complications in the production of synthesized
transactions. Since it believes that it is the main program,
the component will be diligent in rejecting transactions that
are inconsistent with its view of the system state, even
though that view may be completely synthetic and
irrelevant.

 3

3.2.4 Test Cases
For "leaders" that have been converted into "followers,"
test special cases and long or repeated scenarios that could
potentially build up state in the converted component. For
newly built "main" components, conduct standard unit,
integration, and system tests as you would with any new
component.

3.3 Design
3.3.1 Conflict Description
A design conflict occurs when the components were built
to satisfy incompatible design requirements. Examples:

• One component is real-time, another is not.
• One component is secure, another is not.
• One component is fault-tolerant, another is not.

If the design requirement in question is also a
requirement of the integrated system, then the problem is
that one of the components fails to meet that requirement.
If the design requirement is not a requirement of the
integrated system, then the problem is that one of the
components may respond to a timing/security/failure
condition that is irrelevant in the integrated system context.

3.3.2 Resolution
Design requirements are often easy to eliminate but usually
very hard to retrofit. The design requirements in our
examples can be eliminated as follows without modifying
the components:

• Real-time deadlines can all be set to the latest possible
timestamp.

• Security classifications can all be set to the most public
and unprotected policy.

• Failure responses can be turned off or ignored.

But retrofitting them without modifying the components is
fragile at best:

• The component can be left sufficiently under-utilized
that deadlines will be met.

• The component can be wrapped with a security
preprocessor that validates or rejects every transaction.

• The component can be wrapped with a script that
restarts it if it crashes.

3.3.3 Potential for Faults
In the first case, the most likely failure is an inappropriate
response to a condition that is not relevant to the integrated
system. In the second case, the wrapped component is
likely to fail to meet the new requirements under stress
because there is essentially no control over its actual
performance:

• A wrapper cannot force a component to complete its
work on-time.

• A wrapper cannot prevent a component from making
internal state changes that violate security policy.

• A wrapper cannot force a component to respond
intelligently to failure conditions.

If the integrator went to the effort of modifying the
internals of the component to retrofit the new requirement,
then any kind of software fault may have been introduced.

3.3.4 Test Cases
Stress-test the affected component with respect to the
relevant design requirements. If a design requirement has
been relaxed, test extreme cases to ensure that an
inappropriate response does not occur. If a design
requirement has been added, ensure that the requirement
continues to be met under stress. If a wrapper has been
used, test cases that explore the separation of functionality
between the wrapper and the wrapped component.
Otherwise, conduct standard unit, integration, and system
testing with the modified component.

3.4 Model
3.4.1 Conflict Description
A model conflict occurs when components use
incompatible factorings of the same conceptual domain.
Examples:

• Vector graphics versus bitmapped graphics.
• Constructive solid geometry CAD (Computer-Aided

Design) versus boundary representation CAD.

3.4.2 Resolution
Exchanged information must be subjected to a destructive
translation in order to get the receiving system to produce a
similar image. Even so, it is only a similar image; the
semantics of the original data are lost.

3.4.3 Potential for Faults
Since there is no semantic interchange between the
systems, it is unwise to use the received data in any
rigorous computations. Preferably, the received data would
only be used for presentation, and any faults would only
degrade the quality of the presentation without inducing
software failures. But in practice, there may not be any
alternative to using the data, so related failures will occur.

3.4.4 Test Cases
Test any scenarios in which the translated information is
passed farther downstream and/or is used in subsequent
computations. Analyze the flow of information in the
system to determine all possible impacts of the data and
test each significant case.

 4

3.5 Scope
3.5.1 Conflict Description
A conflict of scope occurs when a concept that is important
to the world view of one component is not realized by
another. Examples:

• (From the PC world) A 3-button mouse needs to
operate using a protocol originally designed for a 2-
button mouse.

• One component versions documents while another
considers versioning to be out-of-scope.

• One component requires an approval for every work
item while another does not track approvals at all.

3.5.2 Resolution
If the scope of a component is broader than is required for
the integrated system, the unwanted functionality can be
ignored or the unwanted fields can be filled with
synthesized values. If the scope of a component is
narrower than is required for the integrated system, the
missing functionality must be provided by a wrapper or
somehow embedded within existing structures. (This is
what happens with 2½-button serial mice – middle button
events are encoded as movements that are zero in both
axes.)

3.5.3 Potential for Faults
Again, there is the danger that a component will reject
transactions because of synthesized values having no
relevance to the system as a whole. Added-on functionality
may be faulty, and embedding data within existing
structures can create semantic faults and/or conflicts with
other components that are trying to use the same fields for a
different purpose (maybe even the purpose for which they
were put there in the first place).

3.5.4 Test Cases
If synthesized values have been used to adapt a component
to a system with a narrower scope, test special cases in
which the synthetic values could have an impact. If the
scope has been widened by embedding data in existing data
structures, trace possible uses of the affected fields,
particularly conflicting uses, and test those scenarios. If a
wrapper has been used to extend the scope, test cases that
explore the separation of functionality between the wrapper
and the wrapped component.

3.6 Semantic
3.6.1 Conflict Description
A semantic conflict occurs when the meaning of some
entity is different to different components. Examples:

• One component interprets a given message as a
command to perform an action while another

component interprets it as a notification that the action
has been performed.

• Components assume different units for untagged
numerical values.

• One component's diagnostic dump is interpreted by
another component as flight data. (Although this did
occur during the Ariane 5 disaster, it was not the cause
of the failure [1].)

3.6.2 Resolution
The problematic entities must be translated into those
entities that will best preserve the original semantics when
they are interpreted by the receiving system. In cases
where no perfect translation exists, the integrator must
work around or persuade the users to live with the "lowest
common denominator" semantics.

3.6.3 Potential for Faults
If the integrator is not cognizant of all of the semantic
disagreements between the components, direct mappings
will likely be made between entities that are not quite
equivalent. The components will happily interpret each
other's data in ways that are valid according to their own
specifications but which are completely wrong in the
system context. These faults are similar to those that can
occur in newly developed software when there is a lack of
conceptual integrity. Brooks called these "the most
pernicious and subtle" of all bugs [4].

When the components being integrated are legacies
from different sources, there is no conceptual integrity
except that which
• occurs naturally among like-minded people;
• results from subscription to a common standard,

specification, or reference;
• is imposed by the integrator's mapping.

3.6.4 Test Cases
Identify and document scenarios which demonstrate the
intended semantics of all system-level concepts that are
relevant to the integrated components. Execute the
scenarios and verify that the usage of the concepts was
consistent with the system-level interpretation.

3.7 Syntactic
3.7.1 Conflict Description
A syntactic conflict occurs when components use different
representations for the identical concept. Examples:

• Different file or message formats.
• Different scripting languages.
• Different protocols.

3.7.2 Resolution
Simply translate one syntax to the other.

 5

3.7.3 Potential for Faults
In a word, mistranslation. A mistranslation may result in
valid or invalid syntax. If the resulting syntax is invalid,
one would expect to see fairly obvious failures. But if the
resulting syntax is valid, then the mistranslation generates a
semantic fault.

3.7.4 Test Cases
Perform coverage-based testing of the syntactic elements in
the source representation. Perform additional tests of cases
where the mapping to the target representation is nontrivial,
such as when the correct target representation depends on
context.

3.8 Unknown
The preceding enumeration includes several techniques that
can be used to detect imperfect integration even if the
integration conflicts that have been addressed in the system
are unknown:

• Test for correct usage of system-level concepts as
described in Section 3.6.

• Stress-test the system with respect to overall volume as
well as system-level design requirements.

• Test scenarios in which there is high propagation of
information through the system.

4 Application to Prototype Control System
4.1 Background
For a test subject, we obtained a prototype control system
from another division in our own organization. This
system has been used in the past to demonstrate the use of
the Real-Time Control Systems (RCS) Library [17] to
control a coordinate measuring machine remotely. A real
coordinate measuring machine can be used or a simulation
can be substituted. For practical reasons, we used only the
simulation.

The prototype system is known to produce excellent
results when used in practice with a real coordinate
measuring machine, even though resources are not
available to make a production-quality system. Moreover,
the specific integration that we tested was the lowest
priority for the prototype system's development. Thus, the
results of our testing are only relevant to our hypothesis
regarding test methods, and are not significant for
evaluating the quality or value of the software.

The following paragraph describes our understanding of
the system at the time that we identified test cases. The
testing exercise revealed some inaccuracies in our
understanding that we will discuss in the analysis.

The front end receives Dimensional Measuring
Interface Standard (DMIS) [6] programs that are
normally generated by another component that we
have left out of scope. Using the Real-Time Control

Systems (RCS) Library, it processes these into
Coordinate Measuring Machine (CMM) "canonical
commands." The "canonical commands" are then
reduced to a simple, ad hoc command language that
is sent over a socket. The commands are received
and interpreted by a Graphic Simulation Language
(GSL) program running inside of
Deneb/ENVISION [5] on a different host.
ENVISION simulates a CMM performing the
specified commands and sends simulated inspection
data back over the socket. The inspection data are
read back by the front end and subsequently
analyzed in an operation that we have left out of
scope.

4.2 Preliminaries
In order to verify that the installation of the experimental
("sandbox") copy of the demo was successful, we first
attempted to run the standard demo scenario without
modification. Unfortunately, the installation was not
successful the first time. We encountered a series of
failures resulting from improper configuration
management. With our limited resources, instead of
modifying the demo system code to pursue a proper system
configuration, these were resolved by recompiling the
demo and by identifying specific computer workstations on
which the demo was known to work.

Through discussion with the regular operator, we
established that the front end understands only a subset of
the DMIS language. Clients are expected to restrict their
DMIS input to the subset that is understood. This is due to
the original purpose of the system: to experiment with
certain architectural issues, not to be a complete system. In
addition, GSL has broader functionality than what can be
encoded in the DMIS subset. There is the potential for
conflicts of scope both upstream and downstream, but since
this is a known limitation of the system, we must restrict
the scope of our testing to the subset of DMIS understood
by the front end to obtain results of practical value. We
used the DMIS programs from the existing demo as a guide
to the testable scope.

We also established a priori that a control conflict
exists between the front end and ENVISION. In the demo,
ENVISION starts up as a standalone program. An operator
must interact with it to place it into "server mode" to accept
a connection from the front end. The simulation will only
idle in this mode for a few minutes before spontaneously
reverting to standalone mode, requiring another operator
intervention, but this time-out behavior was intentionally
introduced to conserve critical system resources.

Finally, we observed that the demo scenario is not
calibrated against the CMM simulation as delivered. We
elected to ignore this problem.

 6

4.3 Black-Box Testing
Traditional black-box testing treats the implementation
under test as opaque; tests are selected based only on
coverage of the functional specification or the feasible
domain of input. Coverage-based, black-box testing is
"targetless" in the sense that it is not designed to detect any
particular class of error more than any other. On the other
hand, because the tester is not looking for any particular
class of error, the process is inherently more sensitive to
functional errors, which cause hard-to-ignore failures, than
to semantic ones, which might require more analysis.

The following abstract test cases were formulated after
the preliminaries but before any testing was conducted.
The executable test cases were created in sequence after
testing was begun, so limitations discovered in earlier test
cases would be avoided in later ones. The approach to
identifying test cases was to obtain coverage of the
domains of parameters to the DMIS commands used in the
existing demo scenario. Coverage of DMIS statements per
se cannot be meaningfully explored since the permissible
statements are defined by the existing demo scenario.

Test case 1 Coordinate extrema, GOTO (the DMIS
command for unguarded moves)
Test case 2 Coordinate extrema, PTMEAS (the DMIS
command for probing)
Test case 3 Vectors for PTMEAS (setting the direction of
probing)
Test case 4 Feed rates
Test case 5 Length units
Test case 6 Angle units
Test case 7 Feed rate units

4.4 Testing for Imperfect Integration
Our experimental, "focused" testing strategy is directed by
the taxonomy of integration conflicts. Although we
narrowed the scope of the system considerably, the
following types of conflicts still appear to be relevant:

• Connection (getting ENVISION to receive commands
on a socket)

• Control (too many leaders)
• Scope (narrowed from DMIS and GSL to the scope of

the DMIS parser and the ad hoc control language)
• Semantic (understanding of CMM controller state and

behavior, units, usage of vectors, interpretation of ad
hoc control language)

• Syntactic (DMIS to ad hoc language by several steps)

The following abstract test cases were formulated after
the preliminaries and after the formulation of the black-box
test cases but before any formal testing was conducted.
The executable test cases were created in sequence after
black-box testing was complete, so limitations discovered
in earlier test cases would be avoided in later ones. As with
the black-box testing, it was difficult to conceive of test
cases that would not unfairly bias the yield by detecting the

problems documented in Preliminaries. We considered a
test case "fair" if the expected failure modes were not
identical to one of the known problems:

• ENVISION will refuse to accept connections from the
front end if the front end does not connect to it within a
few minutes of being placed in "server mode."

• Interpretation of DMIS language is incomplete.

Using the guidelines in Section 3, we first identified
one fair test case for each category of conflict known to be
relevant to the system, then filled out the quota with
alternatives. Significantly, we rejected the important
semantic tests on unit conversions and on the directionality
of vectors because they would have been redundant with
black-box test cases previously identified.

Test case 1
Category: Connection
Description: Execute a scenario containing many short
movements while loading the network link between the two
components.
Expected failure modes: stress-related failures.

Test case 2
Category: Control
Description: In the middle of a scenario, set the feed rate
(FEDRAT/MESVEL) very slow and send a movement
command (PTMEAS) that should take very long to
execute.
Expected failure modes: incorrect time-outs, feed rate
faster than requested.

Test case 3
Category: Scope
Description: Using SAVE and RECALL, send a long
DMIS program that switches coordinate systems several
times between movements. (These translations are beyond
the scope of the ad hoc protocol, as are units conversions.)
Expected failure modes: lost or garbled state.

Test case 4
Category: Semantic
Description: Test the semantics of movement and position
with special cases. For example, GOTO the position
already occupied.
Expected failure modes: rejection of apparently legal
commands, unexpected movements or failures to move.

Test case 5
Category: Syntactic
Description: Exercise syntactic variations on numbers and
whitespace in commands. (Most other admissible syntax
tests in the very limited scope are made redundant by the
black-box testing.)
Expected failure modes: incorrect translation.

Test case 6
Category: Scope

 7

Description: Send a DMIS program containing many
boilerplate commands, followed by a normal inspection
scenario.
Expected failure modes: stress-related failures, incorrect
impacts from boilerplate commands.

Test case 7
Category: Semantic
Description: Test the semantics of probing and collisions
with special cases.
Expected failure modes: rejection of apparently legal
commands, unexpected collision behavior.

4.5 Results
To conserve space, subtests in which no failures were
observed are not detailed here.

4.5.1 Black-Box Tests
Test case 1 Coordinate extrema, GOTO

When specified coordinates exceeded the physical
range of the CMM, CMM components "floated" out to the
specified coordinates anyway, even passing through the
table and the floor when necessary. As the moves became
longer, the simulation began "freezing" for increasing
periods of time after each move. Upon further
investigation, we found that a front-end component logging
to a window called EMOVESIMMAIN was active during
these "freezes." In an iconified window, it was logging a
long series of micro-movements that would, in their
summation, equate to the long movement that had been
previously commanded. When this operation completed,
the next command was issued and ENVISION continued
normally.

To enable the test to proceed, all long moves except the
final one were commented out. The final move, which
used coordinates on the order of 1015, was successfully
received by ENVISION. The destination point was drawn,
but ENVISION then reverted to console-interactive mode
and made no further progress. The front end still read the
status as executing. No error message was observed.

When ENVISION was killed to stop the test, the front
end reported feedback from ENVISION which was
erroneous.

Test case 2 Coordinate extrema, PTMEAS
ENVISION performed the PTMEAS commands at the

same velocity as it performed GOTOs. However, the rate
used by EMOVESIMMAIN was considerably slower, so
the "freezes" were considerably worse than in Test 1 and
less subtests could be executed in the available time.
Otherwise, the change from GOTO to PTMEAS did not
produce different results.

Test case 3 Vectors for PTMEAS
The front-end parser printed an error and entered an

infinite loop when WKPLAN (the working plane) was
changed inside of a MEAS block (the DMIS program
structure in which probing is performed). WKPLAN was

moved to the top of the file to fix this. Then the parser had
the same problem when it arrived at a PTMEAS without an
explicit vector. This subtest was commented out. The test
then ran to completion, but some of the steps in the DMIS
program were skipped without any warnings or errors.
Repeated runs of the test showed different skipped steps.

Test case 4 Feed rates
Test 4 contained subtests for GOTO and PTMEAS

related feed rates. The parser printed errors and looped
when MESVEL commands (the commands used to set the
feed rate) appeared inside a MEAS block. The test was
refactored to enable the feed rate to be changed only
between MEAS blocks. It was then possible to begin
executing the GOTO subtest.

Changes in feed rate affected EMOVESIMMAIN but
the rate used by ENVISION was unchanged. When the
feed rate became relatively large, EMOVESIMMAIN
overshot its target and kept going toward infinity,
effectively hanging the test. The GOTO subtest was called
complete and commented out.

The PTMEAS subtest ran into problems as only 4 of the
6 probes needed to characterize a cylinder were actually
executed (skipped steps again) which caused the fitting
algorithm to fail. Making the probes cover a greater
distance did not fix the problem. The subtest was called
complete except to verify that the overshoot problem also
existed for PTMEAS, which it did.

Test case 5 Length units
Changes to the UNITS statement in the DMIS program

caused related canonical commands to be issued in the
front end but the behavior of ENVISION was unaffected.
Neither was a units-changing command issued to
ENVISION, nor were lengths converted by the front end
before being transmitted.

Test case 6 Angle units
ANGDEC (angles in degree decimal form) functioned

normally.
ANGDMS (angles in degrees, minutes, seconds form)

caused the parser to issue an error and loop.
ANGRAD (angles in radian form) caused no error

messages, but the simulation went berserk – Cartesian
coordinates ceased to function normally.

Test case 7 Feed rate units
As before, ENVISION was unaffected by feed rate

changes. EMOVESIMMAIN responded correctly to feed
rate changes, but overshot its target after the DEFALT rate
(sic – spelling is as specified) was selected.

4.5.2 Focused Tests
Test case 1 Connection

Testing prior to network loading showed many skipped
steps. However, no change was observed when the
network was loaded.

 8

Test case 2 Control
A temporary syntax error in DMIS file #4 resulted in a

nonsense parser error being issued for file #5.
As before, ENVISION was unaffected by feed rate

changes, and setting the rate to DEFALT resulted in
EMOVESIMMAIN overshooting and hanging the test.

Test case 3 Scope
Testing was blocked temporarily while a web server

that is accessed by the front end became unavailable.
The parser issued an error and looped when a RECALL

command (recall a SAVEd coordinate system) was issued
inside of a MEAS block. This was fixed and no other
failures were observed.

Test case 4 Semantic
Usage of FROM (define the home position) and

GOHOME (return to the home position) syntax in DMIS
file #3 resulted in a nonsense parser error being issued for
file #4. That syntax was removed and other than skipped
moves the test then ran without additional failures.

Test case 5 Syntactic
No significant failures were observed.

Test case 6 Scope
Every ROTATE command (rotate the coordinate

system) caused MEASPLMAIN (the log window of a
front-end component) to print "invalid transform – better
stop," but the behavior of the ENVISION simulation
seemed to remain correct. The front end was found to have
a limit of 199 features. After the number of features was
reduced, the test ran to completion without additional
failures.

Test case 7 Semantic
The test ran into trouble due to skipped commands.

Additional GOTO commands were added as a workaround
to avoid the skipping.

As had been observed previously, the probe passed
through the simulated part without stopping. By
monitoring the front-end window containing feedback from
ENVISION, we verified that no meaningful probe-related
feedback was being generated. We then replaced the
ENVISION model with an equivalent model that had
collision detection enabled. The probe still passed through
the simulated part without stopping, but probe-related
feedback did appear in the window. Successful probes
returned coordinates and three additional parameters while
"missed" probes appeared as a repeat of the previous line of
feedback. We found that the subtest in which the probe
only just contacted the part produced feedback indicative of
a missed probe, even though ENVISION changed the color
of the screen to show that it had detected a collision. The
subtest in which the probe entered the part did produce
probe feedback, but it was highly inaccurate.

The subtest in which we attempted to probe the table
showed that collisions with the table were not detected at
all.

4.6 Analysis
The classification of failures as "legitimately detected"
failures versus failures that were related to known demo
limitations was subjective. Semantic inconsistencies
between the designer and the user led to some difficulty.
We assumed a system specification in order to be able to
conduct the testing; however, failures occurred which
would have been classified as demo limitations had we
known to ask about such limitations during the
preliminaries. Since we did not, they were validly detected
by the tests (in the context of our assumed specification).

To help with this dilemma, we used the following rules
of thumb. If a given DMIS command caused the front end
to emit a parser error, we excused the failure as a parser
limitation; but if there was no parser error and the
command was not correctly executed, we counted it
towards the "score." Also, if a given misbehavior of the
simulation was obviously something that its users had
chosen to ignore, we classified it as a limit; but if the
behavior was masked in the original demo scenario, we
considered it a legitimately detected failure.

The tables below summarize the limitations and failures
that were detected by the tests. Limitations are denoted by
Ln, failures by Fn. Failures that were not directly related to
the test scenario, but were observed nonetheless, are
flagged by an asterisk.

Table 1: Black-Box Testing

Test 1
Simulated movement exceeds physical range L4
Collisions are ignored L2
ENVISION "freezing" L5,6
Odd behavior after numerical subtest F1
Erroneous feedback after ENVISION killed F2*

Test 2
ENVISION "freezing" L5,6
Probing done at same rate as GOTO L5

Test 3
WKPLAN can't change on the fly L3
Must specify vector in PTMEAS L1
Skipped steps F3

Test 4
Can't set MESVEL inside MEAS block L3
ENVISION ignores feed rate L5
Front-end sim overshot target, kept going F4
Skipped steps F3

Test 5
Length units ignored F5

Test 6
Can't use ANGDMS L1
ANGRAD causes berserk behavior F6

Test 7
ENVISION ignores feed rate L5
Front-end sim overshot target, kept going F4

 9

Table 2: Focused Testing

Test 1
Skipped steps F3

Test 2
ENVISION feed rate not changed L5
Overshoot after set default rate F4
Misleading parse error message F7*

Test 3
Blocked by web server failure L7
Can't RECALL inside of a MEAS block L3

Test 4
Misleading parse error message F7
Skipped steps F3

Test 5 no failures
Test 6

Limit 199 features L3
Test 7

Ignored collisions L2
Bad output from ENVISION simulated probe F8

Table 3: Key to Failure Classes

1 Control linkage broken by numerical overflow
2 Loss of connection to ENVISION generates erroneous

feedback to front end
3 Combinations of short moves cause some to be skipped
4 Front end simulation moves fail to terminate if feed

rate is large
5 Length units are ignored
6 ANGRAD breaks Cartesian coordinates
7 Parser error message identifies wrong input file and

wrong command
8 Bad output from ENVISION simulated probe

Table 4: Key to Limit Classes

1 Front end parser is limited
2 No collision detection
3 Reasonable DMIS interpretation or characterization

limit
4 No bounds on movement
5 Rate of movement in ENVISION not controlled
6 ENVISION controls are dead while blocking on input

from front end
7 Dependent on web server, availability not assured

4.7 Discussion
Many of the identified failures and limitations can be
classified as imperfect integration of some sort. However,
most of them were detected by black-box testing.

The biggest problem for the testing process was the
discovery of the front-end component EMOVESIM and the
role that it played. Our investigation of the freezing
behavior in the first test showed that the long movements
themselves were causing no problem for ENVISION;
ENVISION was merely blocking while waiting on input

from the front end. The next command would not be
issued by the front end until EMOVESIM finished
simulating the same movements, which it did very slowly.

We discussed the relevance of this front-end simulation
with the operator and learned that in fact, the measurement
data received by the front end comes from EMOVESIM.
The data returned by ENVISION are not used. This would
have posed a severe problem had we defined the scope of
our testing to include the subsequent operations on the
returned data.

With regards to ignored collisions and simulated
movement exceeding the physical range, it was again
resource limitations which led to limited functionality.
Feedback from Envision to control was not implemented at
all; therefore, collisions in Envision do not affect the
control. Coordination consistency between the two
subsystems was not implemented either, so the probe can
fly wild. Collision detection was turned off by default
because the concept of collision in Envision was not quite
equivalent to the concept of probe touch that was needed in
the inspection context; it was being used for an unintended
purpose.

5 Conclusion
When used as part of a balanced integration and system test
effort, focused testing for integration faults can improve the
total yield of detected faults, just as any addition of distinct
new test cases can improve the total yield. However, our
trial showed a lower yield for the focused tests than for the
black-box tests, and more integration-related failures were
observed during black-box testing than during focused
testing. Significantly, the integration-related failures were
readily manifested by tests that did not target them at all.
This suggests that traditional black-box testing is still a
highly effective approach to use on a system of integrated
legacy components, despite differences in the kinds of
faults that tend to be present. We did not find evidence to
support the theory that black-box testing has a "blind spot"
for integration-related faults.

In future work we may conduct similar trials on other
systems that we expect to become available, for example,
one that integrates a Product Data Manager with a
workflow system and/or an Enterprise Resource Planning
system, to determine the consistency of the results.

Acknowledgements
This work was conducted as part of the Testability of
Interaction-Driven Manufacturing Systems (TIMS) project
[14] in the Manufacturing Engineering Laboratory of the
National Institute of Standards and Technology. We
express our thanks to Hui-Min Huang and other members
of the Intelligent Systems Division for providing and
supporting the software that we used as a test subject.

 10

References

"By selecting these links, you will be leaving NIST
webspace. We have provided these links to other web sites
because they may have information that would be of
interest to you. No inferences should be drawn on account
of other sites being referenced, or not, from this page.
There may be other web sites that are more appropriate for
your purpose. NIST does not necessarily endorse the views
expressed, or concur with the facts presented on these sites.
Further, NIST does not endorse any commercial products
that may be mentioned on these sites."

[1] ARIANE 5 Flight 501 Failure, Report by the Inquiry
Board. <http://www.esrin.esa.it/htdocs/tidc/Press/
Press96/ariane5rep.html>, 1996.

[2] B. Beizer. Black-Box Testing: Techniques for
Functional Testing of Software and Systems. John
Wiley & Sons, 1995.

[3] F. P. Brooks. The Mythical Man-Month, 20th
Anniversary Edition. Addison-Wesley, 1995.

[4] Brooks, p. 142.

[5] Deneb Robotics, Inc. <http://www.deneb.com/>,
1999.

[6] DMIS Information Center. <http://www.dmis.com/>,
1999.

[7] D. Garlan. Foundations for Compositional
Connectors. International Workshop on the Role of
Software Architecture in Testing and Analysis, 1998.
Available at <http://www.ics.uci.edu/~djr/rosatea/
papers/garlan.pdf>.

[8] ISO 8807:1989, Information processing systems —
Open System Interconnection — LOTOS — A formal
description technique based on the temporal ordering
of observational behaviour. Available from ISO,
<http://www.iso.ch/>.

[9] ITU Z.100 – Z.106, Specification and Description
Language (SDL). Available from the International
Telecommunication Union, <http://www.itu.int/>.

[10] Z. Jin and J. Offutt. Coupling-based Criteria for
Integration Testing. Journal of Software Testing,

Verification, and Reliability, to appear, 1999.
Available at <http://www.ise.gmu.edu/faculty/
ofut/rsrch/abstracts/couptest.html>.

[11] Z. Jin and J. Offutt. Coupling-based Integration
Testing. In Proc. ICEECS '96, pp. 10-17, Montreal,
1996. Available at <http://www.ise.gmu.edu/faculty/
ofut/rsrch/abstracts/complex.html>.

[12] S. J. Kemmerer, ed. STEP: The Grand Experience.
NIST Special Publication #939, U.S. Government
Printing Office, Washington, D.C., 1999. Available at
<http://www.mel.nist.gov/msidlibrary/summary/9920.
html>.

[13] Microsoft. About Microsoft COM.
<http://www.microsoft.com/com/about.asp>, 1999.

[14] K. C. Morris, D. Flater, D. Libes, and A. Jones.
Testing of Interaction-driven Manufacturing Systems.
NISTIR 6260, 1998. Available at
<http://www.mel.nist.gov/msidlibrary/summary/9827.
html>. See also the TIMS web page,
<http://www.mel.nist.gov/msid/tims/>.

[15] Object Management Group. Distributed Debugging
API for ORBs and Services Draft Request for
Proposal. <http://www.omg.org/cgi-bin/doc?test/
99-08-04>, 1999.

[16] Object Management Group. What Is CORBA?
<http://www.omg.org/corba/whatiscorba.html>, 1999.

[17] Real-Time Control Systems Library – Software and
Documentation. <http://www.isd.mel.nist.gov/
projects/rcs_lib/>, 1999.

[18] B. Sridharan. An Extensible Framework for
Monitoring and Controlling CORBA Based
Distributed Systems. First ICSE Workshop "Testing
Distributed Component-Based Systems," Los Angeles,
1999.

[19] J. A. Stafford, D. J. Richardson, and A. L. Wolf.
Architecture-level Dependence Analysis for Software
Systems. International Workshop on the Role of
Software Architecture in Testing and Analysis, 1998.
Available at <http://www.ics.uci.edu/~djr/rosatea/
papers/stafford.pdf>.

http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html
http://www.deneb.com/
http://www.dmis.com/
http://www.ics.uci.edu/~djr/rosatea/�papers/garlan.pdf
http://www.ics.uci.edu/~djr/rosatea/�papers/garlan.pdf
http://www.iso.ch/
http://www.itu.int/
http://www.ise.gmu.edu/faculty/�ofut/rsrch/abstracts/couptest.html
http://www.ise.gmu.edu/faculty/�ofut/rsrch/abstracts/couptest.html
http://www.ise.gmu.edu/faculty/�ofut/rsrch/abstracts/complex.html
http://www.ise.gmu.edu/faculty/�ofut/rsrch/abstracts/complex.html
http://www.mel.nist.gov/msidlibrary/summary/9920.html
http://www.mel.nist.gov/msidlibrary/summary/9920.html
http://www.microsoft.com/com/about.asp
http://www.mel.nist.gov/msidlibrary/summary/9827.html
http://www.mel.nist.gov/msidlibrary/summary/9827.html
http://www.mel.nist.gov/msid/tims/
http://www.omg.org/cgi-bin/doc?test/99-08-04
http://www.omg.org/cgi-bin/doc?test/99-08-04
http://www.omg.org/corba/whatiscorba.html
http://www.isd.mel.nist.gov/projects/rcs_lib/
http://www.isd.mel.nist.gov/projects/rcs_lib/
http://www.ics.uci.edu/~djr/rosatea/�papers/stafford.pdf
http://www.ics.uci.edu/~djr/rosatea/�papers/stafford.pdf

	David Flater
	Abstract
	Keywords
	
	
	
	
	Component, integration, legacy, system, testing

	Introduction
	Related Work
	Taxonomy of Integration Conflicts with Suggested Test Cases
	Connection
	Conflict Description
	Resolution
	Potential for Faults
	Test Cases

	Control
	Conflict Description
	Resolution
	Potential for Faults
	Test Cases

	Design
	Conflict Description
	Resolution
	Potential for Faults
	Test Cases

	Model
	Conflict Description
	Resolution
	Potential for Faults
	Test Cases

	Scope
	Conflict Description
	Resolution
	Potential for Faults
	Test Cases

	Semantic
	Conflict Description
	Resolution
	Potential for Faults
	Test Cases

	Syntactic
	Conflict Description
	Resolution
	Potential for Faults
	Test Cases

	Unknown

	Application to Prototype Control System
	Background
	Preliminaries
	Black-Box Testing
	
	
	
	
	
	Test case 1 Coordinate extrema, GOTO (the DMIS command for unguarded moves)
	Test case 2 Coordinate extrema, PTMEAS (the DMIS command for probing)

	Testing for Imperfect Integration
	
	
	
	
	
	Test case 1
	Test case 2
	Test case 3
	Test case 4
	Test case 5
	Test case 6
	Test case 7

	Results
	Black-Box Tests
	
	
	
	
	Test case 1 Coordinate extrema, GOTO
	Test case 2 Coordinate extrema, PTMEAS

	Focused Tests
	
	
	
	
	Test case 1 Connection
	Test case 2 Control
	Test case 3 Scope
	Test case 4 Semantic
	Test case 5 Syntactic
	Test case 6 Scope
	Test case 7 Semantic

	Analysis
	Discussion

	Conclusion
	Acknowledgements
	References

